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SIGNIFICANCE AND EXPLANATION

hlis paper contains an introduction to some of the ideas and methods used

in finding critical points of real valued functionals by minimax arguments.

The emhasis is on obtaining multiple critical points of functionals

possessing symtries. Applications are given to semilinear elliptic boundary

value problems and Hamiltonian systems of ordinary differential equations.
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NZUZNAX NMHOOB FOR ZNDSPZWZXT FUNCTZONALS

Paul R. Rabinovitz

11. Introduction

During the past few years, there has been a considerable amount of research on

obtaining critical points of indefinite functionals by means of minimax methods. The goal

of these lectures is to describe mome of the ideas and methods that are used in this field

especially for problems involving symmetries. In the presence of symmetries one generally

hopes to obtain multiple critical points.

To bogi, by a functional we simply mean a mapping I : It + R where 3 is a real

DaMah space. The functional I will generally be assumed to be continuously

differentiable, i.e. 3r 6 Cl(I). The Prechet derivative of I at u 6 X acting on

4 e is denoted by I'(u)#. A critical point of I is a point u e x at which

I'(u) - 0, i.e. Z(u)# - 0 for all # e x. The value of I at a critical point is

called a critical value of 1. In applications to differential equations, critical points

of I correspond to weak solutions of the equation. Thus critical point theory earves as

a useful tool for obtaining existence results for differential equations.

What are indefinite functional@? We illustrate with several examplems

Xxamle 1. 1 b oundary value problem for semilinear elliptic Partial differential

eu0ations

Consider the equation

-Au p(x,u) , x e a
(1.2)

u-0 , xeSO

where 0 is a bounded domain in N with a smooth boundary. Under appropriate growth and

mild smoothness conditions on p, solutions of (1.2) are critical points of

(1.3) 1(u) - 10(.
1 IVu, 2 

- P(xu))dx

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
the National Science Foundation under Grant No. MCS-8110556. Reproduction in
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On a M 1 ,2(0). In (1.3). P(X.A) is the prLmatLve of p(x,C), i.e.

P(xC) - p(x,t)dt

For an interesting class of P's. e.g. P(x.) - I wI here I < a < A i f n > 2

and a < - if a - 2, I(u) is not bounded from above or below on Z even modulo

subepaces of finite dimension or codimensLon. Thus I 1. an indefinite functional.

miammel 1.4 : Periodic solutions ol second order Hamiltonian systems

Consider the system of ordinary differential equations,

(1.5) + V q(q) - 0

where q e 7P, v e cl and i!%. More generally, V could depend on t in adt 
2

time periodic fashion. A T periodic solution of (1.5) is a critical point of
(1.6) 1(q) - IT(I 1;12 - V(q))dt

for q in an appropriate Hilbert space of T periodic functions. Once again for a large

class of potential energy term V, 1(q) is an indefinite functional.

Zxale 1.7 s Periodic solutions of general Hamiltonian systems

A general (unforced) Hamiltonian system has the form

0 -Ld
(1.8) z-E(z) , ,-(

id 0

where a - (pq), p, q e KP, and R e C 1 (1 2 n ,n). One of the important properties of such

system is that if z(t) is a solution of (1.8), then the Nenergy Hlz(t)) is

independent of t. Two questions that have been studied for (1.8) are: (a) the existence

j of periodic solutions having a prescribed energy, e.g. H(U(t)) - Ii (b) the existence of

periodic solutions having a prescribed period T. For (a), the period is a priori unknown

so it is convenient to make a change of time scale so that the period becomes 2w and

(1.8) becomes

1', (1.9) 1JU()

where we nov seek A jO 0 and a 2w periodic function z(t) such that H(t)) - 1. The

variational formulation of this problem is: Find critical points of the so-called action

integral

-2-
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(1.10) A(s) a s p'q dt

subject to the constraint

(1.11) 021 U()dt 1

ad a (and 3) in an appropriate class of functions. The constraint (1.11) leads to a

Lagrange mitiplier In the corresponding Suler equation which is the unknown A in

(1.9). Moreover if A, z satisfy (1.9),

(1.12) N(Z(t)) a constant

so (.1.11) implies s(t) le on 91(1).

Problem (b) corresponds to critical points of

(1.13) 1(s) - A(s) - X N(s)dt

COe again it is not difficult to see that the functiona1s (1.13) and (1.10) subject to

(1.11) are Indefinite for a larg, class of EanLtonians.

Rmuele 1.14 a lime terLodLc solutions of a forced semilLnear wave eauatLon

Consider

utt - uxx + f(tvx,u) - 0 0 < x < I

(1.15)
u(O,t) 0=u(t)

where f is T periodic in t and we seek a solution which is also 7 periodic in t.

lhe corresponding functional is

(1.16) 1(u) - f? f(.o ( 2 - u 2 ) - (x,t,u)]dxdt
0 t x

which is indefinite.

-inimax methods will be usd to treat such Indefinite functional*. These methods

characterise a critical value, a, of I as a minmax of I over an appropriate class of

sets Ka

(1.17) c -inf sup 1(u)

As a simple example of such a result, consider the so-called Mountain Pass Theorem:

Eh ee 1.16 (1) 1 Let 3 be a real Sanach space and suppose I e C1 ( , ) satisfies the

P- ais-Imale condition. Further &sm (O) - 0 and I satisfies:

( 1 1 ) There are constants p,4 > 0 such that 1132 ) a.
P

o~~~~~~~~~~~~~................................,,.........: -".--".. -.- --.-.-- ..... .......

)• ;v ~ .*.. " .- J~,./. , * .*.* .. C '
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Th2 2ere exists a0 e ms uch that IW. < 0.

Lot

r - (gO ec(Co.1b) ig()0 9(o1 -m 6)

(11)c - inf Max INu)

in critical. value of I with c ;0 0.

In the theorem, 9 denotes the open ball of radius p about 0 in 9 and 3

denotes its boundary. We will digress briefly to sketch the proof of the Kountain Pass

Theorem because it illustrates some of the basic ideas used in minimax arguments.* First

the Palais-wle condition, (PS), must be explained. This condition states that any

seqee W,) c 2 such that I!(u,)I is bounded and 11un * 0 has a convergent

subeequence. Thus (PS) is a kind of compactness condition. E.g. if

Kc I{u e Z11(u) - c and 140u - 0), then (PS) implies that Kc is compact. it further

Implies a certain uniformity that in required to prove the following (simplest version of

the)

Deformation Theorem: If I e C1 (MR) and satisfies (PU), 7 > 0, and c is not a

critical value of 1, then there is an C e (0,7) and i e W((,11 xc 2,3) such that

10 u"(1,U) -u if 1(u) 0 (C-Z,c4:W1

where As m{u e z v 1u) oc a).

we do unot have time to go into the details of the proof here. However two quick

remarks suffice to illustrate the ides involved in the simplest setting of 3 - IP and I

a C2. Consider the ordinary differential equations

(1.20) A, Vft

with initial condition *(Osu) - u. Then

A-I(*(tlu)) - I'((tuIU 2C 0
ft

so except at seroes of 1', 1 strictly decreases along orbits of (1.20). This observation

together with (PS) plays a key role in establishing 20 of the Deformation Theorem.

-4-
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Actually to got 20, we mast replace the right hand side of (1.20) by a rescaled version of

itself for otherwise the solution may not exist for the full interval t e (0,11. Moreover

to prove 10 , we most also multiply the right hand side of (1.20) by an appropriate

localization factor. See e.g. (21 or (3] for a complete proof.

Proof of the Nountain Pass Theorem: Observe first that each curve g( 10,11) crosses 32p

and therefore

max I(u) ) a

g( [0,11)

by (I,). Bence c • a by (1.19). Suppose that c in not a critical value of 1.

setting e - and invoking the Deformation Theorem, ve find e e (0,7) and2

u 6 c([0,11 x 8,3) such that

(1.21) n(1,AC.":) c Ac_.

Choose g e r such that

(1.22) max I(u) I c+c
ueg( [0,11)

and consider n(1,g(t)). Note that in(1,g(0)) - O(1,0) - 0 via 10 of the Deformation

Theorem since 1(0) - 0 <-2 < c-7. Similarly M(1,g(1)) - n(1,e) - a via (12) and the

above argument. Therefore mi(,g(t)) e r. Sut then (1.21) - (1.22) imply

(1.23) Wx I(u) 4 c- ,

uet ( 1,g( (0,11))

contrary to the definition of c. Thus c is a critical value of I and the proof is

complete.

As was mentioned earlier we will be interested mainly in symmetric functionals in

these lectures. A symmetric functional is one which is invariant under a group G of

mappings of 3 into 3, i.e. I(U) - I(gu) for all g 6 G. Some examples will be given

next.

Rxsemle 1.24: In axauple 1.1, suppose P(x,g) is even in C. Choosing G 3

(id,-Ld) Z2 2 where id denotes the identity map in I, I as defined in (1.3) is

invariant under G.

-5-
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Oxamle 1.25: An appropriate space to work with in Example 1.7 is 3 = (.2 ,2(.)) 2n, the

Rilbert space of 2n-tuples of 2w periodic functions which are square integrable and

1
osess a square integrable derivative of order 1. (See e.g. 141 for a more precise

definition.) Let G i (go I 6 e (0,2w) and gez(t) - z(t+O) for all z e 3). Thus

G - 31(0,2) S and I as defined in (1.13) is invariant under G.

Remark 1.26. For groups G as above, the fixed point set of G, Fix G is defined as

(1.27) Fix G = {u e E I ga u for all g e G) .

Thus in Example 1.24, Fix G - (0) while in Example 1.25, Fix G is the set of constant

functions in I which in turn can be identified with Run. Fix G plays an important role

in problems with symmIetries. Whenever Fix G is nontrivial, care must be taken to avoid

Itt otherwise there are difficulties in trying to exploit the symmetries to obtain

itiplicity results.

Uxamele 1.28: Let I and Z be as in Example 1.3 where Q now denotes the unit ball in

3. Using polar coordinates, we see I is invariant under

G M (gT I T e 10,2w) and g,(u(r,e)) = u(r,e+r) for all u e Z) - S

Bere Fix G consists of those u e E which are independent of 0, i.e. Fix G consists

of the set of radial functions. To date due to the presence of this large Fix G, no one

has successfully used minimax methods to tackle this problem.

The existence of symmetries can be useful in obtaining multiple critical points of a

functional. The first result of this type is due to Ljusternik (5].

Theorem 1.29: suppose f 6 cl(3N,t) and f is even. Then fis n-1 has at least n

4distinct pairs of critical points.

A more recent result is a symmetric version of the Mountain Pass Theorem.

Theorem 1.30 161: Let 3 be a real Danach space and I e cl(F,R) satisfying (PS).

Suppose further I is even, 1(0) - 0, I satisfies (11), and

(I} for all finite dimensional F c 3, there is an R = R(E) such that I 0 on

Then I has an unbounded sequence of critical values.

-6-
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In the remainder of these lectures we will describe some of the ingredients that go

into the proofs of such multiplicity statements as well as some applications to

differential equations such as (1.2) and (1.8).

12. Index theories and some multiplicity results

- In order to exploit symmetries to obtain multiple critical points of a functional,

several preliminaries are required. First we need a way to measure the size of symmetric

sets. An index theory is an appropriate tool for this purpose and is useful in dealing

with symetric sets in other ways. For many situations, especially unconstrained problems,

intersection theorems are needed to get estimates. Classes of sets with respect to which

to minimax the functional must also be found. The choice of such classes has been a very

ad hoc process. Lastly a symetric version of the Deformation Theorem is needed. We will

study these matters next, mainly in a 22 setting.

What is an index theory? Probably the simplest one is obtained with the aid of the

notion of genus introduced by Krasnoselski [7]. The equivalent form of this notion

described here is due to Coffman I8). Let R be a real Banach space and let E denote

the family of sets A c Z'dO such that A is closed in Z and symmetric with respect

to 0, i.e. x e A implies -x e A. ror A e E the genus of A, denoted by y(A)

equals n if there is an odd map # e C(A,n\(O)) and n is the smallest integer with

this property. If there does not exist a finite such n, set Y(A) - -. Also define

y(O) - 0. Same simple examples are in order.

Zxamule 2.1: Suppose A - BU(-B) where 3 n (-B) 0 1 and B is closed. Then

y(A) - 1 since if #(x) = I for x e S and +(x) = -1 for x e (-s),# is odd and

belongs to C(A,3 (0)).

Ixasple 2.2: If n ) 1, A is homeamoorphic to Sn by an odd mapping, y(A) > I for

, otherwise there exists an odd # e C(A,R\(0)). Choose x e A such that #(x) > 0. Then

#(-x) < 0 and by the Intermediate Value Theorem, # must vanish somewhere along any path

Joining x and -x, a contradiction.

The next result contains the main properties of genus. Below for A c E, N(A)

(X e 3 I Ix-AI 4 8), i.e. N (A) is a uniform 6-neighborhood of A.

-7-
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Proposition 2.3s Let A,9 e E. Then

10 Normalizations if x V 0, y((x} u (-Y)) 1.

20 Neazing propertys If there exists an odd mapping f e C(A,D), then

Y(A) 4 y(u).

30 Subadditivityt Y(A U B) 4 Y(A) + y(S).

40 Continuity proverty: If A is compact, Y(A) ( and there in a 6 > 0

such that y(A) - Y(Na(A)).

Proofs 40 is obvious. For 20, the result is trivial if y(B) - a. Thus suppose

¥(S) - n < -. Suppose there exists # e C(B,V\(O)) with * odd. Therefore * 0 f in

odd and belongs to C(A,Rn\(0}). ronsequently y(A) C n - Y(B). To prove 30, suppose

Y(A) - m, Y(S) - n, and both are finite (since again, if not, the result is trivial).

Therefore there are odd functions # e C(A,^\(0}), * e C(A,Rn\{0)). Extend #, *

respectively to ; e c( *), *e C(IMP). Replacing ;, ; by their odd parts, ye can

amem ;, ; are odd. Set f - (;,i). Then f is odd and belongs to

C(A U S, Rm+n\O)). Consequently '(A U D) C men - '(A) + y(B). Lastly to verify 40, for

x e A, let r(x) Ixl - r(-x) and Dr(x)(x) - (u e z I lu-xl < r(x)}. Set Tx -

Sr(x)(x) U Br(x)(-x) and observe that A c U Tx . By compactness, finitely many Txr
xeA

cover A. Since Y(T ) - 1, Y(A) < a by 30. Applying 20 with f - id, Y(A) Cr

Y(r3(A)). Suppose y(A) - n. Choose e 6 C(A,Rn\(0}) with * odd and extend * to

*e CZC,,?) as in 3 with * odd. Since A is compact, 0 on C) for om

8 > 0. Therefore 'y(N (A)) C n - Y(A).

Remark 2.4: For arguments given later it is useful to observe that if y(B) < -, then

Y(CB) -Y(A) - Y(D). Indeed A c A\B U 3 so this follows from 20 - 30 of Proposition

2.3. Also observe that if y(A) > 1, the definition of genus implies A contains

infinitely many distinct pairs of points.

If 3 is infinite dimensional, the following result shows how to obtain sets of

arbitrary genus in B.

Propoeition 2.5, If A e E, a is a bounded neighborhood of 0 in ak , and there exists

a homeomorphiam h e C(A, 30) with h odd, then y (A) - k.

46%iT,."_*':'. . .. -" :: ." "".. " ,..*. .. * . . .-- . . . . . . ." "" " "
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Proof: Clearly Y(A) 4 k. If Y(A) < k, there exists an odd map c(A,RJ\O))

where j < k. The map * h 1  
is then odd and belongs to C(3 0,RJ\{O}). But the

existence of such a map in contrary to the Boresuk-Ulam Theorem 191. Therefore

y(A) - k.

The next proposition is a simple example of an intersection theorem.

Prosition 2.6: If y(A) > k and V is a subspace of 3 of codimension k, then V n

APF.

Proof: Suppose V n A - F. Let P denote the projector of E onto VL where

V 0 V
1 

- M. Then P is odd and P e C(A,V\(O}). By 20 of Proposition 2.3,

y(A) 4 y(PA). Projecting PA radially onto aB1 n V
1  

and using 20 of Proposition 2.3 and

Proposition 2.5 yields

Y(A) ( Y(PA) C y( 1 n V)- k

contrary to hypothesis.

More generally, let 3 be a real Banach space with a group of symmetries G on it,

e.g. 21 8 1, etc. Let E denote the set of A C 3\{O) such that A is closed in E

and invariant under G, i.e. A e E and x e A implies gx e A for all g e G. An index

tery is a mapping i : E + VU(-) such that for all A, B e E,

*' 10 Normalizations If x 0 Fix G, then i ( U gx) - 1.

" 20 Mapping proverty: If f e C(A,B) and f is equivariant, i.e. fg - gf

for all g e G, then i(A) C i(B).

30 Subdditivity: i(A U B) IC i(A) + i(B).

*" 4 °  
Continuity Property: If A is compact and A n Fix G O r, then

i(A) C - and there exists a 6 > 0 such that i(Na(A)) - i(A).

Remark 2.7: If A e E and A n Fix G i F, i(A) - i(). Indeed if x e A n Fix G, the

map f(u) - x, A + (x} is continuous and equivariant so by the mapping property,

i(A) C i({x)). But 20 with f - id shows i((x}) 4 i(A) so equality holds here. Since

A can be replaced by 2 in this computation, i(A) = i(E).

-9-
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Remark 2.8: There are analogues of Proposition 2.5 for more general index theories. X.g.

if G 81 and £ is the index theory define, in 1101 or (III, i(Sn
) - n where Sn 3.s

a 2n - 1 dimensional invariant sphere lying in 5\Fix G. In particular if LPFix G is

infinite dimensional and G = , combining this observation with Remark 2.7 shows

i(A) = - for any A eE such that An FlixG it and i is as in [10,111.

Several index theories can be found in the literature. The first one introduced was

based on the notion of category due to Ljusternik and Schnirelman [12]. We have already

mentioned the "geometrical" index theory provided by the notion of genus. An S
1 

version

of genus was given by Benci [13]. Cohomological index theories can be found in [10-11] and

4 the references cited there.

Now we turn to the use of index theories to obtain multiplicity results for symmetric

functionals. We will mainly work with genus but will sketch the use of an S 1 
index

theory for (1.8). Theorem 1.28 is one of the simplest multiple critical point results.

Before proving it, two remarks are needed.

Remark 2.9: The version of the Deformation Theorem given earlier does not suffice for

multiplicity results. Moreover when treating functionals on a manifold as in Theorem 1.28,

a variant of the Deformation Theorem more suitable for such a setting is required. The

following result is sufficient for Theorem 1.28. For f : 8 n - 1 + R, let A =

[x e 8 I f(x) 4 a). For c e R set Xc " (x e S -  I f(x) = c and f'(x) -

(f'(x),x)x = 0). Here (.,.) denotes inner product.

Theorem 2.10: If f e CI(Cn,R) and is even, c e R, and 0 is any symmetric

neihbohoo of C-, n- Sn-i Sn-I
neighborhood of K in S

n ' l
, then there exists a mapping a C([0,1] x s-,8 n 

and

an C > 0 such that

10 n(t,x) is odd in x.

20

30 if Ac Or, l(I,A c A
cC+C cCC

Remark 2.11: With E - le, set Y = {A e E I Ac Sn' 1 and y(A) ) },
j

1 4 j 4 n. Note the following four properties of the sets y

i-n.

* 0%o-



(ii) Nonotonicity property: y 1 D Y2 z'.. Yn"

(iii) Invariance propertyl If e e c(s' 1 8' l ) and i. c(d, and A e y6 ,

then (A) e y J.

(iv) Excision Property: if A 6 y and B e E with y(B) 4 a < J, then

AI6 T-s"

Indeed property (i) follows from Proposition 2.5 with a -
, 1 4 J C n, (ii) is

trivial, (iii) is a consequence of 20 of Propostion 2.3 and (iv) follows from Remark 2.4.

Proof of Theorem 1.28: Define

c - inf max f(x) , 1 4 J 4 n
Y A Xe

By property (Ii), c 1 1 c2 C...C c n. We claim cj is a critical value of fis a-1 This

fact in itself is not sufficient to prove the Theorem since possibly cl - - +p for

p > I and there is only one pair of critical points corresponding to this degenerate

critical value. However we further claim if cj a...- cj+p c €, then y(; c) ap1+.

Remark 2.4 then shows there are infinitely many critical points corresponding to c. It

suffices to verify the second claim since it contains the first. Suppose Y(i C) C p. Then

by 40 of Proposition 2.3, there is a > 0 such that Y(M6(Kc)) p and by 20 of
.- 'Proposition 2.3, if " N(Kc 1

Proosiio 2.,i -N( n On -l Y(;) 4 P. By Theorem 2.10 with 0 - ,there

exists an q Ce (0,11 x 8n'1,8 n ) with u(1,,) odd and C > 0 such that

(2.12)C Nl1A \) C

Choee A e y J so that

( (2.13) max f 4 c+C
V A

.1A

Then by (iv) of Remark 2.11, ^%N e y5 and by (iii) of the sama result,

n U 1(1,A\N)I y. Consequently by (2.12) - (2.13),

J ,
c Mc 4 max f c -C

a contradiction.

There are generalizations of Theorem 1.28 to infinite dimensional settings due to

'13 Ljusternik (51, Browder (141, Berger [151, Amnn (161, and many others. These abstract

tJ,, -11 -

'a.

......
V. -'



theorems have then been applied to obtain existence of multiple solutions of nonlinear

partial differential equations. Due to lack of time we will not be able to go into more

detail here but turn instead to a symmetric version of the Mountain Pass Theorem. A

somewhat more general result than that stated in Theorem 1.29 will be treated next.

-. 4Theorem 2.14: Let 3 be an infinite dimensional Banach space, and let I e CI(ZR) be

oven and satisfy (PS) and 1(0) - 0. Suppose E - V O X where V is finite dimensional

N, and I satisfies

(1;) There are constants p, a > 0 such that Ia n ,

(Ii) For all finite dimensional subspaces i c Z, there exists R(i) such

that I ( 0 on i\ •
R(E)

Then I possesses an unbounded sequence of critical values.

There is also a finite dimensional version of Theorem 2.12 which is proved in a

similar but simpler fashion. The proof of Theorem 2.14 follows the same pattern as that of

Theorem 1.28. First we need to supplement the statement of the Deformation Theorem with

the fact that if I is even, then n(1,.) can be taken to be odd and if 0 is any

symmetric neighborhood of 'c, then n can be chosen to satisfy n(lAc+C\O) c A,_C. TO

continue, a class of sets, r1, will be introduced. These sets possess properties like
those verified for y in Remark 2.11. M4inimaxing i over r the produces the critical

values cj of I. Lastly one additional argument shows the cj form an unbounded

* sequence.

To begin the proof, suppose V is k dimensional and V - span{el,...,ek). For

a ; k, inductively choose e, 1 0 span{e1 ,...,e }  
3m . Set R S R() and D, -

BR n %. Define

(2.15) Gm = (h e C(D,E) I h is odd and h - id on 8BR n Em)

Then G f since id e Gn . Set

Fj . fh(DO\Y) In ) J, h e Gs, Y e E, y(Y) 4 m-j)

Provosition 2.16: The sets rj possess the following properties:

10 r 1 g for all J e .

-12-
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20 ( ,onotonicit,): r,,1 c r1 .

30 (Invariance), If # e C(K.E) is odd and i -id on 3% n so for

all nell, then : r r j for all u•.

40 (Excision), If a e r . z e E, and y(S) ( a < j, then 3%Z e r,,.-

Proof: The proof in straightforward but tedious and will be omitted.

Now we dsf in*

(2.17) c inf max (u) e N
. nerlj uS

By 20 of Proposition 2.16, j+1 c~j. In order to show that €j is a critical value of

1, a lower bound for €j is required. The following intersection theorem leads to such

an estimate.

Promosition 2.16: If j > k - dim V and 3 e r, then 3 n X n 09DP i' If.

Proofs Let a e rj so a - h(D,\Y) where t ) j and y(Y) ig m.-J. The definition of

iT implies I(u) 4 0 if u e rn\ p, and I ) a on Pn X by U I). ince a > k,

X n Do 0 Or. Therefore R. > p. set ( -{x •D I h(x) e %) and let 0 be the

component of 0 containing 0. Since h is odd and h - id on 33 n So. 0 isa
a

symmreic bounded neighborhood of 0 in S. By Proposition 2.5, y(SO) - a. Set V =

{x e D ax h(x) e O). if xs 6 0, then h(x) e 33 . Therefore y(W) ) y(30) - a by 20

of Proposition 2.3. By Remark 2.4, y(V\Y) ) a - (=-J) - j > k. Hence y(h(;U\Y)) > k by

20 of Proposition 2.3. Consequently the definition of V and Proposition 2.6 show

a3 2 h(Wy) fl x o 0. But 3- h(WT). Therefore a fl x n 3% 3 0.

Remark 2.19s An inspection of the above proof shows the stronger conclusion

"y(D n x n 39B ) ) J-k holds.

Now the lower bound for ci mentioned above can be obtained.

Corollary 2.20, If J > k, cj ) a.

Proof: This is Imediate from Proposition 2.15, (14), and the definition of c.

The next result shows cj is a critical value of I for J > k and also gives a

multiplicity statement for Odegsneratem critical values.

Proposition 2.21, If j > k and cj - c+ 1 o...- cj+p c, then y(K¢) P+1.

-13-
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Proofs By Corollary 2.20, c ) a ) 0. Since 1(0) - 0, 0 * Kc  and Re 6 e Noreover (PS)

Implies Kc to compact. If Y(K) 4 p, by 40 of Proposition 2.3, there is a 8 2 0 such

that Y(UV (K 0 )) K p. The stronger version of the Deformation Theorem mentioned above

with0 -i N cX) and yield the existence of an e ( ) andc 20c

n e C1o0,11 x 3,3) with il,°) odd such that

(2.22) n(1,A+C\O) € Ac- "

c oos a e r such that
4 ~

(2.23) max 1 4 c.e

a
By 40 of Proposition 2.16, Q e r , Moreover by 30 of Proposition 2.16, our choice

of g, and 10 of the Deformation Theorem, T(1,Q) e r Therefore (2.21) - (2.22) show

cC 4 a 14c-e"4!

a contradiction.

The final step in the proof of Theorem 2.14 is given by

Proposition 2.24: a~ ** a i

k.Z. We use a variant of the argument of Proposition 2.21. It was observed earlier that

cj+1 A c  forall j e f. If the sequence (ic) bounded, a * < . if c -W

for all large J, Y(K_) -- via Proposition 2.21. But (PS) implies K is compact so

c c
(K ) by 40 of Proposition 2.3. Thus c ) cj for all j. Let

K- (u e z Ic.+ 1 C 1(u) C ; and 1'(u) - 0). Again applying (PS) and 40 of Proposition

2.3, we see K is compact and there is a 8 > 0 and q e 1 such that

Y(K) - q - Y(V6 (K)). Invoking the Deformation Theorem with 0 - Nd(K) and - cq -

yields c e (0,7) and 'n(1,*) e C((0,13 x 3,3) with 1A(1I,) odd and

(2.25) n(1,A. \0) c A

Choose ji e U such that ci > c-c and B e r,,q satisfying

(2.26) max 1 9 c+
B

By the argument of Proposition 2.21, w(1,i-o) e r1. Therefore

. c 4 max I C c-c c ,
_____

-14-
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a coatradictio.

The proof of Theorem 2.14 in now complete. The earliest version of this theorem can

be found in (1] where applications were also given to a class of "superlinearO elliptic

partial differential equations of the form (1.2). A more general such application will be

sketched next. Consider

(2.27) -Au = p(xfu), x e a I u - 0 x e an

where Q C VP is a bounded domain with a smooth boundary. The function p is assumed to

satisfy the following conditionst

(PI) p 0 C(i x 3,3)

Ip(xC)I (; a1 + a2 ICI where 1 < < B and n P 2(P2) J~,14a -

(P3) 0 < P (x.C) a 0 fo p(xT)dT -9 p(xC) for ICI large

(P4) p(xC) Is odd in C.

Theorem 2.26. If p satisfies (pl) - (p4), (2.27) possesses an unbounded sequence of weak

solutions.
U'

,ltmork 2.29. If (pl) is slightly strengthened, e.g. to p(x,) is locally

51der continuous, then this condition together with (p 2 ) imply weak solutions of (2.27)

are classical solutions. If n a I or 2, (p2) can be considerably weakened.

Proof of Teorem 2.29s Set

INu) - fa4 IVu,2 _ P(x,u))dx2

for u e 3£ 1 w (9) where as norm on a we take

lul - JU IVul2d)'i

lince critical points of I are weak solutions of (2.27), the result is immediate if I

satisfies the hypotheses of heorem 2.14. It is clear that I(O) - 0 and (p4) shows I

is ewn. Hypotheses (pl) and (p2) imply that 1 6 CI(N,R) and (pl) - (p3) imply that (PU)

is satisfied. See e.g. [1] for the details here. To check (12), integrating (p3) shows

there are constants a3. a4 ) 0 such that

-.e*""•" '% . . ** " " " q "•"% . . - .e
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(2.30) P84 0 1I

for all C It. Therefore

(2.31) I(u) ( J.(i lVu,2 - a lul" + 4)dx02 + &4)

for all u e s. in particular for u 6e, a finite dimensional subepace of go the

lull term in (2.31) dominates as u . since P > 2. Thus (2.31) guarantees the

existence of a(!) in (I.).

To verify (I), 3 must be decomposed into V * X. Choose V - spanvIl... vk)

where k is free for the moment. The functions vj are the eigenfunctiona of

(2.32) -Av - Av, x e a I v . 0, x e D

normalized by lv1 - 1 and ordered by increasing magnitude of the correspond-ing

eigenvalues. Set X - VL, the orthogonal complement of V and consider Z1, Sy

(p2 ), for u e So ,

(2.33) 1(u) ) 1 p2 - fa(aSlulo + 1 + a4)dx

for som constants a5 and a6 . By the oagliardo-Virenberg inequality 117],

(2.34) lul % a lulolul1-0
Ls+l (a) L2(a)

where

1 - 2) + (1-0)

If u e x, we have the elementary estimate

(2.35) A 1u12 2 lu12

L (a)
where A denotes the jth eigenvalue of (2.32). Substituting (2.33) - (2.34)

into (2.32) yields

.(1-0)(0+)

(2.36) 1(u) • 2  a 2 pk+1 a.

for u 0 a3 X. Choose p - p(k) so that the term in parenthesis equals 1/4, i.e.

(1-0)(s) s-

'I.p(k) -(4.Xk

U' and

(2.37) 1(u) 1 2 a94~ 9

since 'k + as k + ,p(k)+. as k . Choose k such that pO(k) 2 > 9 9 .

-16-
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Therefore I(u) o ;. piI and (I) holds. The sketch of the proof of Theorem 2.26

is complete.

The multiplicity theorem presented thus far are in a 22 setting. Analogous results

can be obtained when the symetry group is8 1 with applications to scond order and

general 3miltofian systems. In the remainder of this section we will briefly sketch emo

such extensions in the setting of (1.8). Thus consider

(2.30) ; jNJu3 (u).

When N grow at a suaperquadraticO rate as 11 * , there is an analogue of Theorem

2.28 te the corresponding functional

(2.39) I(s) - fP4- ()f

A Coplete treatment Can be found in (161. We will outline the remit sophasiuing its

relationship with the previous case.

Theorem 2.40. If N@ Cl(E13n,) and there exists P )- 2 such that

(NJ) 0 < P N(s) 4 seux for all large Jsi

then for each T o 0, (2.30) posesess a sequence of T periodic solutions which is

unbounded in I.

Proofs Po convenience set T - 2w. A natural space in which to treat the first term in

I(s) Is 3 3 (;6 2(a) )2, the Nilbert spa*e of 2n-tuple. of 2W periodic functions

which possess a square integrable "derivativeO of order . Nowever the second term,

1w R(U)dt need not be defined on 9 since we have not imposed any growth restrictions

on R. This create* a technical problem which one can get around by truncating 8 so that

the now functional belongs to C1 (2,l) and via (1) saetisfies (P). We will ignore this

point and suppose I in (2.39) is continuously differentiable on 3 and satisfies (PU).

Be* [16 for a precise treatment of the technicalities indicated above.

The space I c n be decoqosed into e 0 6 0 0 3" where 3* are respectively the

subepaces of 3 on which A is positive definite and negative definite and 30 N2n is

the net of 2n-tuples of constants. Any z e can be written as a - x+ + Z0 + a- e +

NO + 3.. in an appropriate besis for 3, which is easy to write down,

A(Z) =j2w p.t . + 12 .- i2

-17-
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The igeonvectors in e. I" of A occur in pairs due to the 81 symetry. Ordering then

by the magnitude of the corresponding sigenvalue, let

o span1 t 2a eigenvectors in e+ 303 0t 3 "

Our assumption on U and the form of I shows there exists an R, > 0 such that

1(u) 4 o if u e 1,,.~ Thus as In the proof of Theories 2.14, met On= ,~ nl I, and

- {h • C(D,.)lh satisfies (i) - (iLL)}

where

(i) h Is equivarlant,

(Ii) h - id on (3i, n L) U o ,

(iii) P'h - O(a)z" + (z),

V" being the orthogonal projector of 3 onto X7, Y compact, and B e C(Dm.,1.1F) where

depends on H.

The sets G are more complicated than their counterparts in Theorem 2.14 due to two

factors: (a) The anologue of V in Theorem 2.14 is a subspace of the form L, for some

s and this is Infinite di onsional in contrast to the earlier setting (b) Fix 81 - go

whereas Fix 22 - (0). We require hi3 0 - id due to (b) and (ILL) is needed because of

(a).

Note that id 6 % for all a 6 3 so Gs it OF. As earlier set

r j - (h(ONT) I a ) :J, h e am I Te E, () m-J)

where i refers to an 91 index theory mentioned earlier such an can be found in (101 or

(11 . Then the sets r, possess the propertie given in Proposition 2.16 and minimax

values ci can be defined as in (2.17). moreover there is an analogue of the intersection

theorem, Proposition 2.18.

Proosition 2.41: if e and p < Rio B n 9B nL. i9. If Lj-.1 were finite

dimensional, the proof of Proposition 2.18 and an 8 version of the orsuk-Ulam Theorem

would suffice to got the result. Since Lj.-1  is infinite dimensional, a more complicated

argument is required using a finite dimensional approximation argument and Property (ill)

of 0 to aid in passing to a limit. See (18] for the details.
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The remaining steps in the proof are to show (A) for large 1. cj is a critical value

of I. (a) cj-I(- j) * a where aj is a critical point of I corremponding

to c, and (C) Isj le + a as j 4 -. Step (C) follows from (3). Indeed since

I'(sj) - 0 by (A),

- I:)- J(j * NslS 1 - nCs ))dt
i j jl 0 T j s j

Thus if the functions xj were uniformly bounded in L"' the numbers cj would be

bounded, contrary to (3). steps (A) and (3) are obtained with the aid of a comparison

problem. A function N(JzJ) is constructed which satisfies N(Imi) ) (s) for all a e

3 n. fterefore

I (s) j .(a) E J'w(p.; _ N(s))t

and

ci I I inf max J(u)j J n er jUeS

2.g. If U satisfies a polynomial growth condition, S(s) 4 a1 Isis + a2 , we can take

N(x) - a 1 x + a2 . further restrictions on the choice of N allow us to show

Ij * as j + m thus verifying (a). Lastly (A) follows for large j by a version of

the Deformation Theorem for I which shows 1 6 a. for 4l1 a a a. For the details,

consult 11].

The ideas sketched above and in fact the above theorem can be used to study the

existence of periodic solutions of (1.8) on a proscribed energy surface an was mentioned in

(1.10) - (1.11). As a quick example of such a result, we have

Tbeorem 2.42 1191s Suppose 3 6 C (~n) and 8 (s Sm" .2(s - 1) is a manifold

d *and bounds a capact starshaped region. Then (2.36) has a periodic solution on S.

Proofs Define a nsw Usmiltonlan (s) as follows, Since S bounds a compact starshaped

region, for any s a 12n a O, there is a unique w(s) 0 8 and $(s) > 0 such that

* - 0w. It Is easy to see that S e C ,  is homogeneous of degree 1, and B(s) - 1 Lff

* a I. set i(0) - 0 and f(s) - 0(a)4  for a 1 0. Then 4C 1  and is homogeneous of

degree 4. Since isa a mnifold and I-E9 1 (1)- 1(1), there is an a(s) 0 0 such

that

%,
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(2.43) Hz (z) = a(Z)H z (z)

for all z e S. This fact implies any solution of (2.38) on S is a reparametrization of

a solution of

(2.*44) -J H- Z(z)

on S. Our above remarks about H imply it satisfies (H1 ) of Theorem 2.40. Hence with

e.g. T - 2w, by Theorem 2.40, (2.44) has a solution t(t) such that IC(t)I > ) 1. Now
L

C may not be on S. However by the homogeneity of H, we can choose 6 > 0 such that

H(6C) - 1. Moreover 6C satisfies

(2.45) 8Z- 6 (C) - S JR (SC)

Therefore after a change of time scale, 6C will satisfy (2.44) and the proof is complete.

Rlemark 2.46. Using the ideas of Theorem 2.40 in a more direct fashion, one can prove the

existence of multiple solutions of (2.37) on S provided that S satisfies further

geostrical conditions, thereby obtaining results of Zkeland-Lasry (19) and generalizations

thereof due to Berestycki-Lasry-Mancini-Ruf (201.

-20-
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3. Perturbations from symmetry

In thia final sectLon some results on perturbation from symmetry viii be discussed in

the setting of Theorem 2.29. Consider

(3.1) -Au - p(xu). x 6 fle u - 0. x 6 an

where A and p are as in Theorem 2.211. Therefore (3.1) possesse an unbounded sequence

of weak solutions. Suppose (3.1) is perturbed by adding an inhomogeneous terms

(3.2) -Au - p(x,u) + f(x), x e at u- o, x e an .

The right hand side of (3.2) is no longer an odd function of u and

(3.3) I(u) - 10(I Vu, 2 
- P(xu) - f(x)u)dz

is no lnger even en 8 a -m (0) . Thus the machinery used in the proof of Theorem 2.28

does not apply diretly to this situation.

The perturbed problem (3.2) was first treated independently by Sahri and Derestycki

(211 and by Struve (221. Later somewhat nore general studies were made by Dong and Li (28]

and this author (241. All of these pepers show (3.2) still possesses an unbounded sequence

of weak solutions provided that s in (p) is further restricted. Recently ahri (251 has

proved under less general hypotheses but without any restriction an a beyond (P2) that

(3.2) has an unbounded sequence of weak solutions for almost all f (in e.g. L2 (0)).

Whether such a generic restriction is necessary remains an interesting open question.

In this section, following 1241, we will outline how the ideas used in Theorems 2.14

and 2.29 together with some new tricks yield

Theorem 3.4, Suppose f • L2 (0) and p satisfies (pl) - (p4 ) with a further restricted

by
(3.5 0 =(n 2)-(n-2)s U

n(s-1) l-1

Them (3.2) possesses an unbounded sequence of weak solutions.

The solutions of (3.2) will be obtained as critical points of I as defined in

(3.3). Nowever there is a technical problem in working directly with I since our

argument requires an estimate on its deviation from symmetry (i.e. I(u) - I(-u)) that

I itself does not satisfy. Therefore a modified functional 3 will be introduced for

-21-
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which the appropriate estimate can be obtained and large critical values of which are also

*i critical values of I.

* ~ *To motivate the modified problem, a priori bounds for critical points of I will be

obtained in term of the corresponding critical value. Note that by (p3 ) there are

constants a3 , a4, aS > 0 such that

(3.6) K p(XA) + a ) P PNE) + a ) I
J I3 4 5

for all e R3. If u is a critical point of I, by (3.6)

1(u) - 1(u) - 2 V(u)u _}V1)Q(up(x,u) + a3)dx

(3.7) -

L (0l) L (a])

Using (3.6) again and the N81der and Young inequalities, (3.7) easily leads to the a priori

bounds

(3.8) fa(P(x,u) + a4)dx 4 a ( (u)
2 + I)1

AF for a critical point in term of the corresponding critical value. A bound for lug in

term of I(u) now can be obtained from (3.8), (3.6), and the weak form of (3.1) but (3.8)

suffices for our later purposes.

A modified functional can now be defined as followas Choose X e C(I I ) such that

X(t) - 1 for t 4 1, X(t) - 0 for t ) 2, and -2 < X' < 0 for t e (1,2). For u e 2,

set Q(u) - 2a 7 (1 (u) + 1) and

V(u) - xI QO 10(Plx,u) + a4 )dA)

Finally set

(39 I~u- P(x,u) - *(u)f(x)uldx

The following proposition contains the properties of 3 that will be needed for what

WI follows.

Proposition 3.10: If p satisfies (pl) - (p 4 ), f e L 2 (0) and * is as above, then

() e c 1(2,R).

" (ii) There is a constant N ) 0 such that if 3(u) ) N and J'(u) - 0, then 3(u) =

(u) and I'u - 0.

(iii) There is a constant , ) N such that J satisfies (PS) relative to

-22-
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(u e I 3(u) ; N1) (i.e. any sequence (uj) such that 3(uj) ) N1, J(uj) is bounded

from above, and J'(uj) + 0 as j + - is precompact).

(iv) Ther* is a constant B depending on Ifl 2 such that for all u e 3,

(3.11) 1J(u) - J(-u) ( Bi(1J(u)I + 1)

The proofs of these statements can be found in (241. To prove Theorem 3.4, by (v) of

Proposition 3.10, it suffices to produce an unbounded sequence of critical values of J.

To do so, we begin by defining functions (vj) via (2.32). Let Zj - span(vl,...,v } and

31 its orthogonal complement. Replacing I by 3 in (2.35) and arguing as earlier showst

there is an Rj X R(3j) such that V(u) 4 0 if u a j and lul ;0 R. Let D =

XR j n sj and Gj be as defined in (2.15). Finally define

(3.12) b -inf max 3(h(u)) , j e N
heGj ueD

These numbers cannot be expected to be critical values of I or J unless f - 0.

*" However we have
Provosition 3.13: There exist constants 82 > 0 and k eu (depending on IfI 2

such that for all k ,

(3.14) b k ) 2 kI

4.. where 0 was defined in (3.5).

Proof: The argument follows the same lines as (2.33) - (2.37) with the further observation

[261 that

1.1const. 
j 2/n

for large J. Hence we omit the details.

The minimax values bj will be used for comparison purposes shortly to aid in

producing critical values of 3. Let

U - (u - tv+ 1 + w I t e (0.1+1]. we B n it and lul 4 Rj+ 1)

"4 and

Aj = (H C U ,3) I HID e Gj and H(u) - u if u e 3BR U (BR \% ) ni j1
j I+ JD1  I 11 i

, A new set of ainimax values, cj, can now be defined:

-23-
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(3.15) c - inf max J(H(u)) j e N
HeJ A ueu

Proposition 3.16: If cj > bj O M1 , 5e (Oc-bj),

Aj(H) -(Nej hI (H(u)) 4 b + 6 for u e Dj)

and

cj(S) inf max 3(H(u))
HeY5) u16T

then c (5) is a critical value of J.

Proof. Since Aj(8) c Aj, cj(6) ) c, > b,. Suppose c
1  

is not a critical value of 3.
- 1

Let e (cj -b J-). Then by the Deformation Theorem, there in an n e c( [0,1] x 2,E)

and e > 0 as earlier. Zn particular n(1,u) - u if I(u) e [c1(5) - £. cj(6) + e].

Choose H e A,(6) such that

max J(H(u)) 4 c 1(6) + .

ueu1  J

Therefore

(3.17) max J(l(,H(u))) f c151 -()'!ueu i

We claim * I n11,H()) e A1(6). Certainly * e C(Uj,R). Moreover since HIDJ e Gi and

J(H(u)) b + 5 < cj18) - by our choice of T, u(1,H(u)) H H(u) for u e D via to

of the Deformation Theorem. Similarly n(1,H(u)) - H(u) - u if u e BR +I U

(Bj B R j). Therefore , e Aj(6). But then

(3.18) c (8) 4 max J(I(u))

4. ueu~

contrary to (3.17).

Completion of proof of Theorem 3.4: Since b1 * as j n -, by Proposition 3.13, if we

show cj > bj for some subsequence of J's tending to infinity, then Theorem 3.4 follows

from Proposition 3.16. We will prove

Proposition 3.19: If ci - bi for all j > J , there is a constant 0 such that

(3.20) b 1 4 (j
- 1

Comparing (3.14) to (3.20) and recalling (3.5) then shows cj bj for all large j is

impossible. Hence Theorem 3.4 follows

-24-
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Proof of Proposition 3.19: For j ) J and C > 0, choose H 6 j such that

(3.21) max J(H(u)) 4 b + ,UI, 1

The function E can be extended to Dj+I so that it is odd and continuous. Moreover this

extension belongs to Gj+l, Hence

(3.22) b4+1 4 max .((u))
ueD+, 1

but D)+I - U 1 U (-U 1 ) and by (3.21) and (iv) of Proposition (3.10),

(3.23) max (H(u)) C b1 + : + 0 ((b + + 1)
VjUI)

Combining (3.21) - (3.23) and using the fact that c is arbitrary yields

1

(3.24) b1 +1 4 b1 + 0(bl + 1)

for all 1J J A straightforvard induction argument then gives (3.21) and the proof is

oomplete.

.t
-€
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